DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

Regenerative Medicine, Bioprinting, Wound Healing

Wound Healing

- 3D printed dressings using clinically relevant materials
- Hydrogel bioprinting for burn wound healing

Bone Tissue Engineering

- 4D Printed Scaffolds for Vascularized Bone Regeneration
- Angiogenic pathways in bone regeneration
- Mechanical testing for non-load bearing bones

In Vitro Biological Evaluation

- Various cell viability and toxicity test
- Stem cell isolation
- Differentiation and tissue-specific functionality test

In Vivo Assessment

- Animal surgery with various animal models for wound healing and bone fracture
- Histology analysis and immunohistochemistry

· Non-invasive removal

- Non-adhesive contact
 - The dressing remained intact after removal

3D Printed Dressings Using Gelatin-Alginate Hydrogels

PoC: Fateme (Sha) Fayyazbakhsh, Ph.D.

Postdoctoral Research Fellow, Department of Mechanical and Aerospace Engineering f.fba@mst.edu

Funding

National Institute of Health, Midwest Biomedical Accelerator consortium Ozark Biomedical Initiative

Keywords

 Bioprinting, wound healing, burn wound, cranial bone regeneration, 4D printing, hydrogels, biological evaluation

Collaborative Interests

• Tissue engineering, controlled release materials, *in vitro* and *in vivo* biological evaluation

